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Unsteady flow about a sphere at low to moderate 
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(Received 19 July 1993 and in revised form 6 April 1994) 

A direct numerical simulation, based on spectral methods, has been used to compute 
the time-dependent, axisymmetric viscous flow past a rigid sphere. An investigation 
has been made for oscillatory flow about a zero mean for different Reynolds numbers 
and frequencies. The simulation has been verified for steady flow conditions, and 
for unsteady flow there is excellent agreement with Stokes flow theory at very low 
Reynolds numbers. At moderate Reynolds numbers, around 20, there is good general 
agreement with available experimental data for oscillatory motion. Under steady 
flow conditions no separation occurs at Reynolds number below 20; however in 
an oscillatory flow a separation bubble forms on the decelerating portion of each 
cycle at Reynolds numbers well below this. As the flow accelerates again the bubble 
detaches and decays, while the formation of a new bubble is inhibited till the flow 
again decelerates. Steady streaming, observed for high frequencies, is also observed 
at low frequencies due to the flow separation. The contribution of the pressure to 
the resultant force on the sphere includes a component that is well described by the 
usual added-mass term even when there is separation. In a companion paper the flow 
characteristics for constant acceleration or deceleration are reported. 

1. Introduction 
An essential part of determining particle transport in laminar or turbulent flows is 

the specification of the resultant fluid forces which act on a particle and the subsequent 
particle motion in response to these forces. Basset (1888) gave an analytical solution 
for the motion of a small spherical particle settling from rest under gravity in still 
fluid, based on the assumption of low particle Reynolds number. Within this range 
of unsteady Stokes flow Basset demonstrated the effects of added-mass and viscous 
drag forces, both the usual Stokes drag contribution and a history term representing 
the effects of the finite timescale on which vorticity diffuses through the fluid away 
from the rigid spherical particle. Since then several adaptations and extensions to 
Basset’s result have been made and a general version given by Maxey & Riley (1983) 
incorporates the possible effects of an ambient unsteady or non-uniform flow, and a 
general motion of the particle. The underlying assumptions though remain that the 
particle Reynolds number is very low, so that locally the disturbance flow due to the 
presence of the particle is an unsteady Stokes flow, and that the particle size is small 
compared to the scale on which the ambient flow may vary. 

What happens at finite Reynolds numbers or finite particle size is still not clear. 
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For example a water droplet 300 pm in diameter settling in air will typically remain 
spherical under the influence of surface tension and behave essentially as a rigid sphere 
owing to the large difference in the viscosities of air and water. The corresponding 
Reynolds number is about 20, based on the diameter and terminal fall speed. Similarly 
an air bubble, of the same size, in water will be spherical owing to surface tension. 
Further the presence of surface contaminants, found in all but the cleanest water, will 
for a bubble of this size make it respond approximately as a rigid sphere. Under these 
conditions the bubble Reynolds number as it rises under buoyancy is about 10. These 
issues are discussed further in the excellent review of Clift, Grace & Weber (1978). 
The effect of added-mass is well defined where the flow around the body is inviseid 
and irrotational (Batchelor 1967), but whether the same is true at finite Reynolds 
numbers or in flows containing vorticity is not certain. A significant contribution in 
this direction was made by Auton, Hunt & Prudhomme (1988). They considered the 
motion of a spherical bubble in an inviscid flow which contained weak vorticity, with 
a non-uniform ambient flow. They were able to demonstrate the appropriateness of 
the added mass concept in this context and the correct form it takes for a single 
spherical particle. 

The focus of this paper is to investigate the unsteady flow about a rigid sphere 
within the particle Reynolds number range Re < 50. The flow far from the sphere is 
assumed to be of the form 

u = U(t)e('), (1.1) 

where the unit vector e(l) is then an axis of symmetry for the flow around the sphere 
and U ( t )  allows for various unsteady ambient flow conditions. The flow is further 
assumed to be axisymmetric with no swirl flow component. We seek to investigate 
the flow characteristics near the sphere and determine the various fluid forces on the 
sphere. 

Theoretical results for steady, uniform flow past a rigid sphere are given by 
Proudman & Pearson (1957). They applied matched asymptotic procedures for low 
Reynolds numbers to determine both the flow field and the fluid drag force as a 
function of Reynolds number, their results being valid for Re < 1. Beyond this 
range data have come from experimental determination of drag forces or from direct 
computations of the flow. Standard empirical drag laws for varying Reynolds numbers 
are summarized by Clift et a2. (1978). Computations of steady axisymmetric flow 
past a sphere have been conducted by Rimon & Cheng (1969), Le Clair, Hamielec & 
Pruppacher (1970) and more recently by Fornberg (1988), all based on finite-difference 
schemes. A different computational approach based on an expansion in terms of 
Legendre functions and spherical harmonics was used by Dennis & Walker (1971), 
Oliver & Chung (1989, and by Brabston & Keller (1975) in the context of a spherical 
gas bubble. These simulations give results consistent with the experimental data for 
the drag forces, and have been used to develop improved formulae. The computations 
also have demonstrated the formation of a separated flow region, with a bubble of 
recirculating flow behind the sphere, for Reynolds numbers greater than 20.5. These 
features agree with the earlier flow visualization experiments of Taneda (1956), who 
noted that the length of the separation bubble grows linearly with the logarithm 
of the Reynolds number. Beyond a Reynolds number of between 120 and 130 the 
wake region behind the sphere becomes unstable and flow is inherently unsteady. 
Stability characteristics of the wake have been investigated by Kim & Pearlstein 
(1990), Natarajan & Acrivos (1993), and by Tomboulides, Orszag & Karniadakis 
(1993). 
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Bentwich & Miloh (1978) and Sano (1981) have extended the matched asymptotic 
procedures of Proudman & Pearson (1957) to consider the flow around a sphere which 
is impulsively set into motion with a specified velocity. Specifically they examine the 
transient flow development at low Reynolds numbers. Their results exclude added- 
mass effects since there is no acceleration but indicate how the drag force develops 
from zero to the final steady flow value. At early times Sano showed that the 
usual Basset solution applies with appropriate higher-order corrections, but that at 
longer times there is a faster approach to steady flow conditions. A computational 
investigation of this transient flow development was carried out by Dennis & Walker 
(1972) and by Lin & Lee (1973). 

Experiments for a sphere in an oscillatory external flow have been conducted for 
some time in the context of acoustic streaming (Lane 1955), where the amplitude of 
displacements within the fluid is small compared to the sphere diameter. Experiments 
for large-amplitude oscillations were conducted by Odar (1964) and further reported 
by Odar & Hamilton (1964). In these latter experiments the instantaneous force on 
a sphere was measured as it executed a prescribed sinusoidal oscillation in a fluid 
that was otherwise at rest. An attempt was made to modify the expressions for 
added-mass, instantaneous drag force and Basset history term in terms of Reynolds 
number, but in the absence of further data the results are not conclusive. 

More recently Drummond & Lyman (1990) have carried out a preliminary, compu- 
tational study of oscillatory flow past a sphere, mostly in the range of small-amplitude 
oscillations. They investigated the effects of the oscillatory flow and the steady acous- 
tic streaming on mass transfer away from the sphere. In another computational 
study Mei, Lawrence & Adrian (1991) have investigated the characteristics of small- 
amplitude oscillations in an otherwise steady mean flow past the sphere. Like Sano 
(1981) they were interested in the long-range behaviour of the Basset history effect at 
finite Reynolds numbers. They concluded that this effect would decrease much more 
rapidly at low frequency than the usual Stokes flow estimate would suggest. Rivero 
(1991) and Rivero, Magnaudet & Fabre (1991) have also reported recent work on 
the oscillatory axisymmetric flow past a sphere. Their results will be discussed later 
in the paper. 

In the following sections we describe the analytical and computational procedures 
used in this investigation. We examine the flow structure in oscillatory flow, com- 
paring results with the experiments of Odar & Hamilton (1964), and determine the 
contributions to the fluid from pressure variations and viscous shear stresses. In 
a companion paper (Part 2, Chang & Maxey 1994) we examine the flow struc- 
ture as the flow undergoes either a constant acceleration or deceleration in the free 
stream. 

2. Equations of motion 
The specific system considered is that of a viscous, incompressible flow past a rigid 

sphere of radius a which is held fixed in an unbounded fluid. Far from the sphere 
there is an unsteady but unidirectional flow U(t)e(') in the free stream. The unit vector 
e(') is an axis of symmetry for the flow and we restrict attention to axisymmetric flows 
without swirl. Position coordinates are given by spherical polar coordinates ( r ,  €I,+) 
with the origin fixed at the centre of the sphere and the polar axis (0 = 0) aligned 
with e('). This flow configuration is illustrated in figure 1. The flow variables are put 
into non-dimensional form by scaling all lengths by the sphere radius and scaling 
all velocities by a reference flow speed UO, for the free-stream velocity U(t ) .  In 
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V( t )  d') 
FIGURE 1. Flow configuration. 

non-dimensional form the fluid velocity u(n, t )  satisfies the equations of motion 

2 
Re 

au 
- + u . v u = - v p + - v 2 u ,  
at 

v . u = o ,  (2.2) 
where the pressure p is scaled by pUi for a fluid of constant density p. The Reynolds 
number Re is defined in terms of the sphere diameter 2a and the kinematic viscosity 
v as 

Re = 2aUo/v. (2.3) 

u = O  on r = 1 ,  (2.4) 

The boundary conditions on the fluid velocity are that 

u = U(t)e(') as r -+ 00. (2.5) 
These equations are solved by introducing a vector potential for the flow which 
ensures then that the condition (2.2) of incompressible flow is satisfied exactly. The 
form of this potential for axisymmetric flow is 

u = v x (Ce@)),  (2.6) 

where e@) is the local unit vector tangential to the &coordinate. The radial and 
azimuthal components of velocity are 

i a  
(C sin 8), ue = - - - ( rC) .  (2.7) 

i a  u, = -- 
r sin 8 138 r Br 

In this formulation the potential function C(r,  8, t )  is related to the more usual Stokes 
stream function y by the relation q~ = rC sin 8. The pressure is eliminated by forming 
the equation for the vorticity o = V x u, which as the flow is axisymmetric without 
swirl has only one non-zero component q. The vorticity equation is 

2 
at Re 4 3  
-- a(% - (V x (u x 0 ) ) .  e(4) + -D'w 
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where the operator D2 is defined as 

The vorticity and potential function C are related by 

D2C = -04. (2.10) 

Hereafter the subscript 4 will be omitted for this vorticity component. 
The flow is determined by numerically solving (2.8) for the vorticity and (2.10) for 

the potential function subject to the boundary conditions (2.4) and (2.5). Spectral 
methods are used to represent the spatial variation of the flow based on the techniques 
developed by Orszag (1974) and a time-differencing scheme is used to explicitly 
advance the flow evolution in time. The spectral representation in the 8-variable is 
a Fourier series. It is more usual in a spherical geometry to use a series expansion 
in Legendre polynomials as in the study of Dennis & Walker (1971). The Legendre 
polynomials give increased resolution at the poles 8 = 0,n and are suitable where 
discontinuities may occur. On the other hand a Fourier representation is more 
convenient in this context and as shown by Orszag (1974) no singularities arise 
in practice owing to the vanishing of sin8 at the poles. An advantage of the 
Fourier representation is that fast Fourier transform algorithms may be used to go 
between physical space and spectral space representations. The procedures based 
on the Fourier representation may also be extended to fully three-dimensional flows. 
Another feature is that it gives a uniform spatial resolution on the surface of the 
sphere which may be more appropriate for unsteady or non-uniform flow conditions 
where the detailed flow structure is not necessarily confined to some fixed wake region 
or narrow region at the poles. 

Physically all the flow variables ur, ug and o are continuous and regular at all points 
in the flow. Along the axis of symmetry, for 0 = 0 or n, the azimuthal component 
of the flow ug is zero. The range of the coordinate variables 8 and 4 is normally 
restricted so that 0 d 8 < n and 0 < 4 < 2n but in principle 8 may be varied from 
-n to n with some alternate restriction on 4. The point specified by the coordinates 
( r ,  8,4) is unaltered if the transformation 

e+-e,  + d + n  (2.11) 

is applied. The local radial unit vector e(r) is similarly unaltered while the vector e(@ 
is reversed. Consequently ur, obtained as u * e@), is invariant while ug changes sign. 
Under axisymmetric flow conditions there is no dependence of the flow on the value 
of the &coordinate so we may conclude that ur is an even function of 8, ug is an 
odd function and that the vorticity w is similarly an odd function. The relations (2.7) 
in turn imply that C is an odd function. Thus the vorticity o is an odd, periodic 
function of 8, which is regular and may be represented by a Fourier sine series over 
the range 0 < 8 d n. 

The potential function C may also be regarded as a regular, non-singular function 
at all points in the flow. The definition (2.7) of C in terms of the fluid velocity allows 
some arbitrariness in that any constant multiple of (rsinO)-' may be added to it 
without changing the flow. Singularities due to terms of this sort may be ignored. 
Otherwise the relations (2.7) imply that C is non-singular at the poles. The boundary 
conditions (2.4) may be reformulated as 

(2.12) 
ac C=O,-=O on r = 1 ,  
dr 

12-2 
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and at large distances from the sphere 
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w = 0, c = iU(t)rsine as r + 03. (2.13) 

2.1. Evaluation of the drag 
The resultant fluid force on the sphere exerted by the moving fluid is found by 
integrating the contributions from the stress tensor oi, over the sphere surface: 

r 
Fi = aijnjdS, P (2.14) 

where n is the unit outward normal. Since the flow is axisymmetric the force F acts 
parallel to the free-stream velocity U and there is no lift force. The component of the 
force in the direction e(l)  can be expressed in terms of the spherical polar coordinates 
as 

F1 = (orr cos 6 - ore sin B)dS. (2.15) f 
The normal component of the stress orr is 

dur 
orr  = -p  + 2pv- 

dr 
(2.16) 

in dimensional form. The no-slip boundary conditions (2.4) and the condition of 
incompressible flow (2.2) ensure that dur/dr  vanishes on the surface of the sphere so 
that the only contribution from or, is through the pressure. The shear stress is 

(2.17) 

again in dimensional form. Following our previous non-dimensional scaling in terms 
of the sphere radius, fluid density, and free-stream velocity scale the non-dimensional 
drag force Cd is defined here as 

cd = F1 /?TpU2 U:. (2.18) 

The drag force Cd may be split into two separate parts, C f  for the frictional 
component due to shear stress and C, for the pressure component with their sum 
equalling cd. On the surface of the sphere the no-slip boundary conditions (2.4) lead 
to the result that the rate-of-strain term in (2.17) is equal to half the local surface 
vorticity. The frictional component Cj  is calculated from (2.15) and (2.17) as 

w(r = 1, e) sin2 e do, 
Re 

(2.19) 

in terms of the surface vorticity. The pressure component C, in non-dimensional form 
is " 

C, = -1 p ( r  = 1,8)sin28 do, (2.20) 

where the pressure p is non-dimensional, scaled as before by pUi. A direct evaluation 
of the pressure can be avoided by considering the momentum equation (2.1) near the 
surface of the sphere, and in fact the pressure variation over the surface of the sphere 
can be determined once the vorticity field is known: 

(2.21) 
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In order to compare our results with those of other authors we define a non- 
dimensional pressure coefficient 

k ( e )  = ;(p(r = i , e )  -pa)), (2.22) 

where p, is the pressure at infinity. The coefficient is equivalent to a scaling of 
pressure by pU,2/2. The pressure at the stagnation point, 8 = x ,  can be evaluated 
from the radial momentum equation as 

(2.23) 

3. Numerical method 
A pseudospectral or collocation method based on the technique developed by 

Marcus & Tuckerman (1987) is used to advance the equations of motion in time. 
Functions are presented both in spectral space as a finite series of basis functions 
and by values at collocation grid points in physical space. Derivatives are obtained 
from the spectral representation while products are evaluated in physical space. The 
vorticity o and the potential C are expanded as a Chebyshev polynomial series in 
the radial direction and as a sine series in the azimuthal direction. A function f ( r , 8 )  
written in these terms takes the form 

M N  

m=O n=l 

where Tm is the Chebyshev polynomial of degree m. In physical space f(z,8) is 
represented at the collocation point 

(3.2) 

(3.3) 

8, = x n / ( N  + 1) for n = 1,. . . , N ,  

z, = cos-’(2xm/M) for m = 0,l. ..., M. 
An algebraic map 

where 
2L 

rm - 1 
b = l + -  (3.5) 

and L is a scaling parameter, is used to map the radial interval 1 6 r < I ,  to the 
interval -1 6 z 6 1. This form of algebraic map was found to give reliable accuracy 
under a wide range of flow conditions and maintained the spectral accuracy of the 
scheme. A finite, but large outer radius r ,  was chosen to avoid regularity problems 
in the radial differentiation. An example of this map for M = 64, with r ,  = 50 and 
L = 2 is shown in figure 2, where r is plotted both as a function of z and of index m 
for the collocation point (3.3). 

The potential C is written as the sum 

c = c + c ,  (3.6) 

C = U(t)r sin 8 (3.7) 

with the potential c corresponding to the prescribed flow in the freestream, typically 

as in (2.13). The potential c is then due to the disturbance produced by the presence 
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FIGURE 2. The map r = 1 f L(l + z ) / ( b  - z )  which maps IzI < 1 to 1 < r < roo, where 
b = 1 + (2L)/(rm - 1) and L = stretch parameter for r ,  = 50 and L = 2, (a) as a function of z, and 
(b) as function of grid point index in. 

of the sphere. The boundary conditions for the numerical scheme corresponding to 
(2.12) and (2.13) are 

c = O ,  w = O  at r = r c o .  (3.9) 
Thus at the outer radius a condition of zero vorticity is maintained, with the radial 
inflow-outflow matched to the free-stream conditions. 

The sine series expansions (3.1) for w and c match exactly the periodicity conditions 
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and symmetry conditions in 0 discussed previously. The series may be regarded as 
a Galerkin expansion (Marcus & Tuckerman 1987), or the truncation to N terms of 
some infinite Fourier expansion (Orszag 1974). To obtain the potential function c 
from the vorticity o at any time level requires the solution of the elliptic equation 
(2.10). Following Marcus & Tuckerman (1987) we define the separable derivative 
operators D: and Di through 

1 
r2D2 = D; + ~ D;, 

sin2 6 
with 

(3.10) 

(3.11) 

(3.12) 

In spectral 6-space the effect of the operator Di at any fixed radial location (physical 
r-space) can be written as a matrix ptptpts which operates on a vector of the N sine 
series coefficients. For the series 

N 

f(8) = cfj sin j 8 ,  (3.13) 

the corresponding sine series coefficients of Dif are the components of the vector 
Sijfj where 

j=l 

f 1/4(i - 2)(i - 1) for i = j + 2 

-1 - 1/2i2 for i = j 

1/4(i + 2)(i + 1) 
Sij = { 

for i = j - 2 
(3.14) 

l o  otherwise. 

This matrix is N x N if the representation for Dif is truncated to N Fourier terms. 
Similarly the operation of multiplying a function f(0) by sin28 can be written as 
a matrix Q, which has a similar structure. Again the matrix Q is N x N if the 
representation of sin28f(6) is truncated to N terms. There is an ambiguity though 
about possible terms in sin(N + l ) O  or sin(N + 2)6, especially if the series (3.13) itself 
is a truncated series. The combined operator (1/ sin2 8)D; is equivalent to 9- 'S  and 
can be written as an N x N matrix A where the only non-zero elements are 

(3.15) 

This is the result given by Marcus & Tuckerman (1987). As noted by Orszag (1974) 
the ambiguity of the higher-order Fourier terms is resolved by requiring that the 
representation of (1/ sin2 6)Dif(6) be regular at the poles. 

al(i) = -i(i + 1) for i = j ,  
a2(i) = -2i for i < j ,  i + j even. 

A ,  = { 

3.1. Time integration 
Time integration of the vorticity equation (2.8) is accomplished through use of 
an explicit second-order Adams-Bashforth scheme for the nonlinear terms and an 
implicit second-order Crank-Nicolson scheme for the viscous and linear terms. The 
calculations are made in physical r-space and spectral 8-space. If we denote by &(r, t) 



356 E .  J .  Chang and M. R. Maxey 

the vector of N sine series coefficients for the vorticity, then the discretized forms of 
equations (2.8) and (2.10) are 

+ A h(r,  t + At) = &t), 1 
[D; + A] 2(r, t + At) = -r2h(r, t + At), 

where 

(3.16) 

(3.17) 

(3.18) 
Re + A h(r,  t )  - -r2[3G(t) - G(t  - At)], 1 2 

G = (V x (u x m))  . e(cp). (3.19) 
The radial derivatives are evaluated by collocation methods and expressed as 

matrix operations on the vector of function values at the grid points in physical 
r-space. For the representation (3.1) with ( M  + 1) collocation points we introduce the 
(M + 1) x (M + 1) matrix operation ptptptD(')(n), 

(3.20) 

where D; is the matrix corresponding to D; and I is the identity matrix. The operator 
[D; - r2(Re/At) + A ]  acting on i;)(r,t + At) in (3.16) may now be written in block 
matrix form as 

D(')(l) 0 a2( 1)l 0 

D("(2) 0 a2(2)1 

D(')(3) 0 

D('I(4) 

a2( 1)l 

0 

a2(2)1 

0 

0 

a2(2)1 

0 

a2(4)1 

... 

... 

... 

... (3.21) 

This matrix acts on the vector of length (M + 1) x N of the vorticity coefficients 
(&(ro),&(r~),. . ., 6i(rm),&(ro), . . . ,6&(rm)). Equation (3.16) is an upper triangular, 
block matrix problem in physical r-space and spectral 8-space which can be solved 
by back substitution with the Dirichlet boundary conditions discussed below. The 
equation (3.17) is treated in the same manner and leads to an upper triangular, block 
matrix problem with each diagonal term on row n replaced by D; + al(n)l. 

3.2. Green's function method 
To enforce the radial boundary conditions a Green's function method has been 
developed which gives the correct boundary conditions (3.8)-(3.9) and allows the 
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FIGURE 3. (a) Streamlines for Re = 0.1; Atp = 0.25. ( b )  Lines of constant vorticity for Re = 0.1; 
Am = 0.1. 

surface vorticity to develop naturally. The procedure follows similar approaches 
by Marcus & Tuckerman (1987) and Kim, Moin & Moser (1987). The discretized 
equations (3.16) and (3.17) for the time stepping of the vorticity and potential function 
may be written as the coupled system 

E2U(r ,  8, t + At)  = R(r, 8, t ) ,  

H2c(r, 8, t + At)  = -r2a(r ,  8, t + At) ,  
(3.22) 

where E 2  and H 2  are the collocation, derivative operators and R is the known, 
time-dependent, inhomogeneous term given by (3.18). This system is linear in the 
new variables at time ( t  + At)  and a solution may be constructed by superposing 
general and particular solutions which satisfy the homogeneous and inhomogeneous 
equations respectively. The homogeneous equations, with R equal to zero, are solved 
first in a preprocessing stage to yield Green’s functions &j  and Z;. that satisfy the 
time-independent boundary conditions that on the sphere E j  is zero and 

1 if 8 = j x / ( N + 1 )  

0 otherwise 
Gj(r  = 1,8) = (3.23) 

while &j ,  Z j  both vanish at r = roo. These functions are saved and combined later in 
the computation to ensure that the full solution satisfies (3.8) and (3.9). The particular 
solutions satisfy (3.22) with the corresponding vorticity vanishing at both r = 1 and 
r = roo, while the potential function cp = -@ on the sphere and is zero at r = im 

Further details, together with tests of the numerical scheme are given by Chang 
(1992). 

4. Steady flows 
To verify the numerical methods and to provide a comparison for the unsteady 

flows discussed later, simulations for steady, unidirectional flow were carried out for 
Re < 40. For these the flow is initially at rest and then a uniform, constant external 
flow U(t )  = 1 is introduced in the direction of 8 = 0, and the simulation continued 
till the solution has converged to a steady state. A time step of At = 0.005 is used 
in all of these calculations, with spatial discretizations of 48 x 48, 64 x 64, or 96 
x 96 grid points. The Chebyshev Gauss-Lobatto collocation points, in conjunction 
with the algebraic map (3.4) yield a clustering of points near the sphere surface. The 
stretch parameter L is used to control this clustering. Typically for Re < 1 a value of 
L=8 and an outer radius of 250 is used with a 48 x 48 grid. For higher Reynolds 
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FIGURE 4. (a) Streamlines for Re = 10; Atp = 0.25. (b)  Lines of constant vorticity for Re = 10; 
AUJ = 0.25. 
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FIGURE 5. (a)Streamlines for Re = 40; Atp = 0.25. (b)  Lines of constant vorticity for Re = 40; 
AUJ = 0.5. 

numbers a value of L=2 and outer radius of 50 is used with either a 64 x 64 grid for 
Re < 20 or a 96 x 96 grid at larger Reynolds numbers. At low Reynolds numbers the 
vorticity diffuses over a large region compared to the sphere radius owing to viscous 
action, while at higher Reynolds numbers the vorticity is convected downstream with 
a more complex structure, which requires increased resolution. 

At low Reynolds numbers the flow is reasonably well described by a Stokes flow, 
and the vorticity diffuses evenly over a large distance. Figure 3 shows the vorticity and 
streamlines in the vicinity of the sphere at a Reynolds number of 0.1. A very slight 
asymmetry about 8 = x / 2  is observable. At higher Reynolds numbers, corresponding 
diagrams for Re = 10 and Re = 40 are shown in figures 4 and 5. It is evident that there 
is a distortion of the vorticity field by advection in the flow and at Re = 40 a region 
of separated flow is clearly visible, with a small localized region of positive vorticity 
in the near wake of the sphere. The onset of a separation region is indicated when 
d o / B O  is zero at the rear stagnation point of the sphere. An estimate of Re = 20.7 is 
given by the current simulations as the Reynolds number for the onset of separation. 
This is in good agreement with the value of Re = 20.5 given by Dennis & Walker 
(1971) and the value of Re = 20 given by both Le Clair et al. (1970) and Lin & 
Lee (1973). Others have found separation to first occur at different Re, for example 
Rimon & Cheng (1969) found separation as low as Re = 10. The experiments by 
Taneda (1956) showed separation occurred somewhere between Re = 22 and 25 with 
an estimated onset value of Re = 24. 

Table 1 lists for the larger Reynolds number simulations the angle 8 at which 
separation was found to occur and the length of the separation bubble as measured 
downstream from the rear stagnation point. Taneda’s data suggest that the length of 
the separation bubble varies linearly with the logarithm of the Reynolds number. Our 
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Re k(n) C, C, 

0.1 62.3 81.8 40.8 
0.2 32.1 41.5 20.7 
0.3 22.0 28.1 14.0 
0.4 16.9 21.3 10.7 
0.5 13.9 17.3 8.63 
0.6 11.9 14.6 7.28 
0.7 10.4 12.6 6.32 
0.8 9.29 11.2 5.60 
0.9 8.43 10.0 5.03 
1.0 7.74 9.12 4.57 

0.1 62.3 81.8 40.8 
1.0 7.74 9.12 4.57 
5.0 2.61 2.41 1.26 

10.0 1.87 1.43 0.784 
15.0 1.60 1.07 0.612 
20.0 1.46 0.863 0.538 
25.0 1.38 0.744 0.472 
30.0 1.32 0.658 0.427 
35.0 1.28 0.593 0.394 
40.0 1.25 0.542 0.374 

Present 

122.6 
62.2 
42.1 
32.0 
25.9 
21.9 
18.9 
16.8 
15.1 
13.7 

122.6 
13.7 
3.67 
2.2 1 
1.68 
1.40 
1.22 
1.09 
0.987 
0.916 

Goldstein 

122.2 
62.2 
42.2 
32.2 
26.2 
22.2 
19.3 
17.1 
15.5 
14.1 

Rimon & 
Cheng 

2.21 

0.930 

Proudman & Chester & 
Pearson 

122.1 
61.9 
41.9 
31.8 
25.8 
21.8 
18.9 
16.8 
15.1 
13.8 

Le Clair 
et al. 

122.04 
13.66 
3.56 
2.14 

1.36 

1.06 

0.930 

Breach 

122.1 
62.0 
41.95 
31.9 
25.9 
21.9 
19.0 
16.9 
15.3 
14.0 

Dennis & 
Walker 

122.1 
13.72 
3.61 
2.21 

1.40 

0.904 

BS I l d  

0.337 0.065 
0.468 0.136 
0.553 0.204 
0.614 0.267 

TABLE 1. Computed stagnation-point pressure coefficients, computed drag coefficients, separation 
angle Os, and wake length l l d  where 1 is the distance downsteam from the rear of the sphere to the 
end of the recirculation region and d is the sphere diameter 

data, although restricted to Re < 40, are consistent with such a result. It should also 
be remarked that over this limited range a simple linear relationship with Reynolds 
number is also a good approximation. Table 1 also lists the computed drag force Cd, 
based on non-dimensional units (2.18), and these are compared with the results of 
previous studies including those of Goldstein (1929) and Chester & Breach (1969). 
The agreement is generally good, and for Re d 1 the results compare well with the 
estimates of Proudman & Pearson (1957). Indeed the agreement was found to be 
better here than with various higher order asymptotic results. 

The calculations of the drag coefficients depend entirely on the surface pressure 
distribution and the surface vorticity, giving the contributions C, (2.19) from the 
shear stress and C, (2.20) from the pressure. Figures 6 and 7 show the variation in 
these distributions on the surface of the sphere. The development of flow separation 
is visible from the surface vorticity at higher Reynolds numbers, where a local region 
of positive vorticity develops near the rear stagnation point, 8 = 0. Correspondingly 
the surface pressure shows a more significant adverse pressure gradient as the rear 
stagnation point is approached, at higher Re. The non-dimensional stagnation-point 
pressure coefficient k(n),  defined by (2.23), is listed in table 1. The values of this 
pressure coefficient at the forward stagnation point are in excellent agreement with 
the results of Dennis & Walker (1971). The values approach the inviscid value 
of k(n) = 1 as the Reynolds number increases, and for Re 2 20 are generally in 
agreement with the estimates of Homann (1936) based on boundary-layer theory. 
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RGURE 6. Surface pressure distribution for steady flow at Re = 5,10,20 and 40; 0 = 180 

corresponds to the upstream stagnation point. 

5. Oscillatory flow 
For the oscillatory flow case, the external flow field is prescribed as a purely 

sinusoidal motion with zero mean. The frequency of the oscillation is o and the 
amplitude of the fluid displacement in the far field Ao. The velocity of the fluid far 
from the sphere is parallel to the axis of symmetry and is given by U = U(t)e(') with 

U ( t )  = -Aoa sin ot. (5.1) 

The corresponding potential function C for the free-stream conditions is given by 
(3.7) as 

- A0o C ( t )  = -----I sin 0 sin ot. 

The reference velocity scale of the flow field, Uo, is set equal to Aoo, the maximum 
flow speed in the free stream. 

In formulating the vorticity and stream function equations, as in $2, the dimensional 
radial coordinate r' is scaled by the sphere radius a and the dimensional velocity d 
by the reference velocity scale UO so that r = r' /a  and II = d /&a. The Reynolds 
number (2.3) is defined also through the peak velocity during an oscillation cycle and 
is given as Re = 2Aoaa/v. The non-dimensional frequency St,  or Strouhal number, is 
then a measure of the relative amplitude of the oscillations, 

(5.2) 2 

S, E aa/Uo = a/&. (5.3) 

We have restricted this study to Re < 20 and S, < 10. It is convenient to now introduce 
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F~GURE 7. Surface vorticity distribution for steady flow at Re = 5,10,20 and 40 with 

the azimuthal angle f3 given in degrees. 

two parameters later used for analysis. The first is the acceleration parameter Ac, 
which is the ratio of the scale Ui / (2a )  for the convective acceleration in the flow 
to the scale oU0 for the temporal acceleration. Ac is proportional to the Keulegan- 
Carpenter number K (Keulegan & Carpenter 1958), and inversely proportional to 
the Strouhal number: 

(5.4) 
The second parameter of interest, denoted M2,  is the square of the ratio of the sphere 
radius a, to the Stokes lengthscale (v/o)1/2 for viscous diffusion: 

Ac = K / 2 x  = Ao/2a = 1/2St. 

2 a20 M = - = -  V Re&. (5 .5)  

At low frequencies and for large-amplitude oscillations the convective acceleration 
term is the dominant inertial effect. Under these conditions the non-dimensional 
scheme adopted here of scaling by a and UO or oAo is physically relevant. The time 
variable is scaled similarly and the phase angle $ of an oscillation cycle is defined 
by ot’ in terms of dimensional variables, or equivalently Stt  with non-dimensional 
variables. So the non-dimensional forms of the free-stream velocity (5.1) and the 
potential function (5.2) are 

U ( t )  = - sin $, (5.6) 

C( t )  = --sinesin$. (5.7) 
r 
2 

- 

The computations were performed with the vorticity equation as given by (2.8) and the 
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boundary conditions (3.8) and (3.9). At very high frequencies, with small-amplitude 
oscillations, S, is large and the temporal accelerations dominate any convective inertial 
effects. For the computations in this range a separate formulation was needed with 
the frequency of the oscillation used to define the timescale. Lengths and velocities 
were still scaled by the sphere radius a and the maximum flow speed a&. 

The magnitude of the peak free-stream velocity, Aoa, and the density p are used to 
scale the pressure coefficient: 

Of interest is the relative variation of pressure over the surface of the sphere and not 
specific values. Therefore results are quoted relative to the pressure at 8 = x which is 
assigned a reference value of zero, k(x) = 0. 

The code used to obtain the steady flow results, with appropriate changes to the 
free-stream and boundary conditions, was used for these simulations. Typically, the 
time step used was 0(10-3) and the number of grid points used was 642 with stretch 
parameter L = 2 and roO = 50. At low frequencies ( S ,  << 1) the flow is highly diffusive 
in nature and vorticity extends throughout much of the flow field. In calculating these 
flow fields, a 962 grid was used with map parameters L = 4 and roO = 150. 

5.1. Validation 
In order to check the flow simulations, results are first compared with the analytic 
unsteady Stokes flow solution given by Basset (1888) for a rigid sphere undergoing 
arbitrary rectilinear acceleration in a still fluid. The velocities and particle diameter 
are considered to be sufficiently small so that the convective acceleration term in the 
equations of motion is neglected. The resultant fluid force acting on a sphere which 
starts from rest and moves with velocity V ( t )  through otherwise still fluid is 

- 5 (4xa’) p v ( t )  - 6xa,uV(t) - 6xa2,u (5.9) 

where P( t )  is the acceleration of the sphere. This formula includes the inviscid 
added-mass effect, a viscous drag force equal to the linear Stokes drag at the same 
velocity, and and additional viscous drag force from the Basset history term. 

For the sinusoidal oscillating flow under consideration, the reference frame is 
changed to one in which the sphere is fixed and the external flow is given by (5.1) 
so that V ( t )  is now replaced by Aoosinot dl). After a long period of time, the 
lower limit of the integral in (5.9) may be set to --co indicating that initial transients 
to the motion have died out. The force then on a stationary sphere in a viscous 
fluid oscillating sinusoidally in the free stream with a small-amplitude, high-frequency 
velocity is given non-dimensionally by 

cos(S,t - n/4) 
12 12M 

- CdB = 2S, cos Stt  + - sin S,t + - 
Re Re 

(5.10) 

based on the scaling (2.18). A term equal to ;S,cos(S,t) is included in (5.10) that 
corresponds to the inertial force from the change of reference frame. Figure 8 shows 
the difference between the drag given by (5.10) and the drag calculated from a full 
simulation with Re = .1 and S, = 10. These results compare favorably with Basset’s 
result with the maximum relative error less than O(lOP3). The difference is itself 
almost sinusoidal and indicates that the difference between the actual computed drag 
force and the analytical result (5.10) is primarily attributable to a phase shift between 



Oscillatory flow about a sphere 363 

- 5 . 0 1 , ,  , , , , , , ,  , , , , , , 1 
0 1.57 3.14 4.71 6.28 

$ 
FIGURE 8. (Cd - CdB)/max[Cd~] versus q5 for Re = 0.1 and S, = 10; C ~ B  is the drag coefficient 

corresponding to the Basset solution. 

the two. The form of (5.10) implies that the force varies only at the frequency of the 
flow oscillation, there being no harmonics present. The Fourier time spectrum of the 
calculated force is shown in figure 9 and indeed shows little harmonic content. The 
third harmonic, which is the only one observed, is ten orders of magnitude less than 
the fundamental and is negligible. 

To further test our numerical simulation, results are also compared with the 
experimental data provided by Odar (1964). Results for Re = 16.7 and Sr = 0.625 are 
shown in figure 10, which corresponds to run 9 of Odar’s experiments. The results 
compare favourably to Odar’s experimental data, with the maximum error occurring 
just before the force peaks during a cycle. This coincides with an area where the 
experimental data were erratic and had to be smoothed. In addition, the tank used 
to contain the fluid in which the sphere was moving had an effective outer radius 
of 14.4 radii which may have affected the results. However, our simulations for this 
Re - S, combination indicate only minor changes in results for different r ,  > 15 with 
a 0.4% difference in force at maximum free-stream velocity between results obtained 
at r,  = 15 and roo = 150. At r = 14.4 the vorticity field is 0(10-5) throughout 
the oscillation cycle, indicating that the outer boundary probably had little effect on 
Odar’s results. Comparisons with other sets of data obtained by Odar yield similar 
results. 

5.2. Flow characteristics 
Figures 11 and 12 show a sequence of streamline and vorticity contours over half an 
oscillation cycle for Re = 16.7 and Sr = 0.625. Figures 13 and 14 show the corre- 
sponding relative surface pressure and surface vorticity distributions. The sequence 
begins just after the free-stream has reversed direction and has started to flow from 
right to left, towards the direction of 0 = n. There are distinct inner and outer regions 
of vorticity of opposite sign which exist throughout the flow cycle. Even at peak free 
stream velocity the attached vorticity, generated at the surface (which is designated 
as the inner region), remains confined to an area very close to the sphere. Upon 
deceleration of the free stream the flow separates and the vorticity starts to detach 
from the sphere. This detached (now outer) region of vorticity generated during the 
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FIGURE 9. Fourier time spectrum for cd with Re = 0.1 and St = 10; 
fundamental frequency is S , / ~ K .  

acceleration phase is much weaker than the inner region of vorticity generated during 
deceleration. As each half-oscillation cycle is completed, a new region of surface- 
generated vorticity (of opposite sign) detaches creating the layering effect seen in the 
vorticity contours. Examination of flows at other Reynolds and Strouhal numbers 
yields similar flow patterns. 

Although separation does not occur for Re < 20 in steady flows, the development 
of such a separation region during the deceleration phase of the oscillation is not 
completely unexpected. Boundary-layer theory predicts that separation can occur in 
decelerating flows due to the effects of an adverse pressure gradient (cf. Batchelor 
1967). Indeed, in this investigation, separation is only found during free-stream 
deceleration. Table 2 shows the length of the recirculation region at the rear of the 
sphere, 1, and the separation angle measured from the rear of the sphere at 8 = n: 
towards the front on the sphere surface in radians, ABs, at 4 = 47~/5. At lower Strouhal 
numbers (higher-amplitude flows), the separation region is much longer at the rear 
of the sphere than at higher S,, with a smaller separation angle. Conversely, at higher 
Strouhal numbers, the separation region extends a shorter distance downstream at 
the rear of the sphere but has a larger separation angle. Similarly the downstream 
length of the region decreases and the separation angle increases with lower Reynolds 
number. 

Also given in table 2 is the phase angle at which separation is first observed, &. 
As the Strouhal number increases, 4s approaches the limiting value 4s = 3 ~ / 4 .  This 
limiting value is the same as that given by the Basset solution (5.1 1) for high-frequency, 
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FIGURE 10. Computed and measured experimental drag forces (Odar 1964) over an oscillation 

cycle for Re = 16.7 and S, = 0.625: simulation (-); experiment (. . . .). 
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FIGURE 11. Streamline patterns over half an oscillation cycle for Re = 16.7 and S, = 0.625 for 
U ( t )  = -sin(b); (a) 4 = n/16, A v  = 0.1; (b) 4 = n/4, A v  = 0.25; (c) r$ = n/2, Av = 0.25; (d) 
4 = 3 ~ / 4 ,  Ay = 0.25; (e) 4 = 15n/16, A v  = 0.1; (f) 4 = n, AV = 0.025. v < 0 (- - -), v = 0 
(- . -.) , and v > 0 (-). 
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FIGURE 12. Vorticity contours over half an oscillation cycle for Re = 16.7 and S, = 0.625; (a )  
Cp = q’16, Aw = 0.2; (b) Cp = x/4, Aw = 0.4; ( c )  Cp = q’2, Aw = 0.6; ( d )  4, = 3x14, Am = 0.2; (e )  
4 = 1571/16, Aw = 0.2; (f) Cp = x, Aw = 0.2. w < O  (---), w = O  (-.-.), and w > 0 (-). 

Re st 1 A& 4s 
0.1 0.625 - - 3.04 
1.0 0.625 - - 2.83 
5.0 0.625 0.158 0.558 2.45 

10.0 0.625 0.624 1.05 2.35 
16.7 0.1 1.83 0.636 1.71 
16.7 0.625 0.845 1.22 1.96 
16.7 1.0 0.599 1.34 2.08 
16.7 2.5 0.269 1.62 2.23 
16.7 0.0 0.082 * 2.34 
0.01 0.0 - 3.01 
0.1 0.0 - 2.82 
1.0 0.0 - 2.56 

10.0 0.0 0.085 * 2.37 
0.1 0.1 - 3.10 
1.0 0.1 - 2.99 

10.0 0.1 - 2.55 

TABLE 2. Length, I ,  and separation angle in radians, A&, of recirculation region at 4 = 4x15; - 
indicates separation has not yet occurred; 4s is the phase angle at which separation is first observed; 
* indicates that the bubble completely encompasses the sphere at this phase angle 
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Re = 16.7 and S, = 0.625 at C$ = x/16 ,7~/4 ,7~/2 ,  3x/4,15x/16, and 7 ~ .  

unsteady Stokes flow conditions for which the surface vorticity is 

w(r = 1,8) = sin 8{M cos(4 - x/4) + sin 4},  (5.11) 

and the variation in surface pressure is 

3M { d Re 
p ( r  = 1 , O )  = cosO - sin 4 + - cos(4 - 4 4 )  + (5.12) 

This limiting behaviour may be expected since for any fixed Reynolds number the 
increase in the value of St is associated with smaller-amplitude oscillations (5.3) and the 
vorticity is eventually confined to the relatively thin Stokes layer on the surface of the 
sphere. The large value of M (5 .5)  implies that the nonlinear convective acceleration 
terms in the equation of motion are negligible, at least as a first approximation. Thus, 
even if the value of Re is large the drag force is given by Basset’s result (5.8). At 
low fixed Reynolds numbers, the phase angle Qls for the onset of separation increases 
towards x as the Strouhal number is reduced. This represents more of a quasi-steady 
response since the free-stream velocity reverses at 4 = 7c. The angle of separation is 
associated with the point at which the surface shear stress, or equivalently (2.19) the 
surface vorticity, changes sign. Under conditions of Stokes flow the Basset solution 
(5.11) shows that the surface vorticity reverses simultaneously at all points on the 
sphere. Thus there is no definable angle of separation AQs for Stokes flow. The effect 
of nonlinear convective acceleration by the flow is to introduce phase variations in 
the reversal of surface vorticity at different locations on the sphere. Thus for the 
flow sequence of figures 11 and 12 the point of separation begins at 8 = x and 
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FIGURE 14. Surface vorticity over half an oscillation cycle for Re = 16.7 and S, = 0.625 at 

4 = ~ 1 1 6 ,  n/4, n/2, 37~14, 157~116, and n. 

moves to 0 = 0 as the phase 4 increases. At moderate Reynolds numbers and lower 
values of S,  separation appears soon after the flow starts to decelerate at 4 = x / 2 ,  
and 4, increases towards 3n/4 as the oscillation frequency is increased. These trends 
are discernible in the results of table 2. From these results we may conclude that 
except for very low Reynolds and Strouhal numbers the reversal of the surface shear 
stress, and the appearance of a separation region, will exhibit a phase lead over the 
free-stream velocity. 

5.3. Steady streaming 
Steady streaming refers to the time-averaged mean flow generated by the Reynolds 
stress during the cycle. Streaming due to a sphere undergoing low-amplitude os- 
cillations has been studied by Riley (1966) who considered the four low-amplitude 
cases given as I:  M = 0(1), 11: Re = 0(1), 111: Re, = Re/S, 2 0(1), and IV: M a l .  
Re, is the Reynolds number associated with the streaming outside the surface shear 
layer and is given as Re, = maxlU(t)12/ov. In cases I and I1 a thin oscillatory Stokes 
shear layer is formed near the sphere. In the shear layer the nonlinear convective 
acceleration generates a mean flow and induces a mean flow outside the shear layer. 
The steady flow outside this layer adjusts to the free-stream conditions in a Stokes 
flow manner, since S, is large and Re, small, with vorticity diffused throughout the 
flow field. For case I11 a double boundary layer is formed where the vorticity of 
the outer streaming flow is also confined within a boundary layer, the shear wave 
layer is embedded within this boundary layer and both are confined to an area near 
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FIGURE 15. Steady streaming patterns for Re = 16.7 and S,  = 0.625. (a) Time-averaged stream 
function, i j ,  over an oscillation cycle; i j  < 0 (- - -), i j  = 0 (- . -.), and i j  > 0 (-). ( b )  Time 
averaged vorticity, a, over an oscillation cycle; < 0 (- - -), = 0 (- . -.), and i% > 0 (-). 

the sphere. In case IV the shear-wave layer is found to be large with the vorticity 
extending far into the flow field away from the sphere. 

Figure 15(a) shows the time-averaged stream function over an oscillation cycle for 
Re = 16.7 and S, = 0.625. Here the amplitude of the oscillations is somewhat large 
(1.6 sphere radii) and the flow does not fall under any of the low-amplitude cases 
considered by Riley. The presence of steady streaming is seen in the form of counter- 
rotating standing eddy regions that are reflection-symmetric with respect to the sphere 
equator and flow centreline. These regions appear to be confined to a region near 
the sphere indicating the existence of a second outer streaming region and a double 
boundary-layer structure. Figure 15(b) shows the time-averaged vorticity associated 
with this steady streaming. Two distinct regions of vorticity are seen suggesting such 
a structure. A double boundary-layer structure is more clearly seen in figure 16 
where the Strouhal number has been increased to S, = 10 with the Reynolds number 
remaining at Re = 16.7. This flow falls under classification I11 where Re, > O( 1). 

An example of a streaming pattern without a double boundary-layer structure is 
shown in figure 17 where Re = 0.1 and S, = 0.625. Since the Reynolds number is very 
low and the oscillation amplitudes somewhat large, the diffusive lengthscale is much 
greater than a typical length a indicating that inner and outer streaming regions are 
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FIGURE 16. Steady streaming patterns for Re = 16.7 and S, = 10.0. (a) Time averaged stream 
function over an oscillation cycle; Tp < 0 (- - -), Tp = 0 (- . -.), and W > 0 (-). ( b )  Time 
averaged vorticity over an oscillation cycle; i3 < 0 (- - -), i3 = 0 (- . -.), and i3 > 0 (-). 

not expected. The recirculation and outer vorticity regions extend throughout the 
flow field. 

Table 3 shows results for several different Reynolds and Strouhal number com- 
binations. Riley found Res%-l to be a necessary and sufficient condition for a 
low-amplitude oscillatory flow to have a double-boundary layer structure. Our data 
suggest that this is not the case for high-amplitude (low-S,) flows, regardless of the 
Reynolds number. For the cases included in this investigation, the only ones exhibiting 
two streaming regions are those where Res 2 O( 1) with low- to moderate-amplitude 
oscillations. There do not appear to be any generalizations that can be made for the 
existence of inner and outer streaming regions for flows of all amplitudes. 

The generation of steady streaming is associated with the production of higher 
harmonics of the oscillation frequency through nonlinear inertial effects. A frequency 
spectrum of the flow indicates the strength of these effects. Figure 18 shows the Fourier 
time decomposition of the vorticity field at various ( r , Q )  positions for Re = 16.7 and 
S,  = 0.625. These spectra were obtained by sampling every 4/32 over 10 periods. At 
( r , Q )  = (1.79,25~/64) the mean vorticity, while lower in magnitude than the forcing 
frequency, is quite significant. Both even and odd harmonics are active and decay 
with increasing frequency. The second harmonic is more than a decade lower than 
the forcing frequency and the sixth harmonic is seven decades lower. Much further 
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FIGURE 17. Steady streaming patterns for Re = 0.1 and S, = 0.625. (a) Time averaged stream 
function over an oscillation cycle; v < 0 (- - -), = 0 (- . -.), and ij7 > 0 (-). (6) Time 
averaged vorticity over an oscillation cycle; G < 0 (- - -), G = 0 (- . -.), and G > 0 (-). 

Re St ReS M2 6s 6 Cat. Rec. 

16.7 0.625 
16.7 10.0 
0.1 0.625 

16.7 0.1 
0.01 10.0 
0.1 10.0 
1.0 10.0 

10.0 10.0 
0.1 0.10 
1.0 0.10 

10.0 0.10 

26.8 
1.67 
0.16 

0.001 
0.01 
0.1 
1 .o 
1 .o 

10.0 
100.0 

167.0 

5.23 0.44 0.36 - 2 
83.7 0.11 0.12 I11 2 
0.03125 5.65 0.89 - 1 
0.837 1.09 0.46 - 1 
0.05 4.47 0.86 IV 1 
0.5 1.41 0.64 I 1 
5.0 0.447 0.36 I1 1 

50.0 0.141 0.14 I11 2 
0.005 14.1 0.93 - 1 
0.05 4.47 0.86 - 1 
0.50 1.41 0.50 - 1 

TABLE 3. Stokes shear-wave thickness, 6s = ( v / o ) ' / ~ ;  length of mean surface-generated inner 
vorticity layer, 6; categorization, Cat. (see text); and number of recirculation regions, Rec.; for 
various Re and S,  combinations. Here Res = R e / &  and M 2  = iReS, 
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from the surface, at ( r ,  0) = (19.5,7~/32), the vorticity is much weaker. Here, there 
are only three active modes, including the mean, and they are all lower in magnitude 
than the sixth harmonic at the first location. At position ( r , 0 )  = (1.06,n/2), which 
is on the axis of symmetry, there is no mean vorticity present. The vorticity here 
is composed strictly of rapidly decaying odd harmonics; the fifth harmonic is seven 
decades below the fundamental. Fourier spectra for the velocity components behave 
similarly and are not shown. 

5.4. Forces 

The viscous drag force and pressure force on the sphere for Re = 16.7 and S,  = 0.625 
over one oscillation cycle are shown in figure 19. A phase lead is evident in the 
frictional component ; the viscous force changes sign before the free-stream velocity. 
This is due to the recirculation region formed following flow separation during the 
decelerating period of the oscillation cycle. The strength and size of this region 
at a certain point becomes the dominant flow feature near the sphere. When the 
amount of negative surface vorticity is greater than the amount of positive vorticity, 
the viscous drag force (2.19) will be negative. Table 4 gives the phase angles, $f, &, 
and 4 d ,  at which the viscous, pressure and total drag coefficients, respectively, change 
sign. At low S,, 4f + n, indicating that for high-amplitude oscillations the frictional 
force is nearly in phase with the forcing velocity. For increasing S,  or decreasing 
Re the anticipated value 4f + 3n/4 is approached as convective effects diminish. 
The pressure drag force also exhibits a phase lead over the free-stream velocity. At 
high values of S, acceleration effects dominate the composition of the pressure drag 
force. For a free stream oscillating with U ( t )  = -sin4 the added-mass force in both 
the Stokes flow and inviscid flow cases is proportional to S , C O S ~ .  For high S,, this 
will dominate the pressure component of the drag yielding the computed result that 

-+ n/2. The combined result is that there exists a phase lead for all but the lowest 
S,-Re combinations; the force on the sphere changes sign before the flow reverses 
direction. This is significant because it indicates that under the correct conditions, 
instead of retarding the fluid flow, the presence of the sphere can act to maintain the 
flow. 

The Fourier time decomposition of Cd for Re = 16.7 and S,  = 0.625 is shown in 
figure 20. The small mean component seen is a residual due to the initial start up and 
is small enough to be ignored. The force spectrum is composed of the fundamental 
forcing frequency of the free-stream velocity and, owing to the axial symmetry of 
the flow, odd harmonics of this frequency. The spectra decay quite rapidly with the 
fifth harmonic being seven magnitudes below the fundamental. The spectra for the 
individual components exhibit almost identical behaviour, with only a few modes 
containing any real energy. 

Based on their experimental data for the forces on an oscillating sphere, Odar & 
Hamilton (1964) proposed an empirical relationship between the force and the velocity 
and acceleration conditions for use at low to moderate Reynolds numbers. The 
relationship is an extension of the Basset formula and contains estimated contributions 
from a quasi-steady drag force at the same corresponding instantaneous Reynolds 
number, an added-mass term and a history term. The form of the history integral 
was assumed to be the same as in unsteady Stokes flow (5.9) but with an empirically 
determined coefficient QH multiplying the final result. Corresponding to (5.10) their 
estimate for the force on a sphere placed in an oscillating free stream is 
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314 

2 

1 

0 

-I 

-2 

E.  J. Chang and M .  R. Maxey 

I I 
1.57 3.14 4.71 6.28 

9 
RGURE 19. Frictional and pressure drag forces, Cf  and C, for Re = 16.7 and S, = 0.625. The 

free-stream velocity is shown by the dotted line, 4 is the phase angle of the oscillation in radians. 

0 0.5 1 .o 1.5 

Frequency 
FIGURE 20. Fourier time spectrum of Cd for Re = 16.7 and S, = 0.625. 



Oscillatory J ~ O W  about a sphere 375 

Re st d'f d ' p  d'd 

0.1 0.625 3.03 3.00 3.02 
1.0 0.625 2.87 2.67 2.80 
5.0 0.625 2.73 2.26 2.53 

10.0 0.625 2.67 2.10 2.40 
16.7 0.1 2.88 2.51 2.74 
16.7 1.0 2.58 1.89 2.17 
16.7 2.5 2.50 1.75 1.97 
16.7 0.625 2.64 2.01 2.30 
16.7 10.0 2.43 1.65 1.79 
0.1 10.0 2.82 2.55 2.72 
1.0 10.0 2.59 1.94 2.24 

10.0 10.0 2.45 1.68 1.84 
0.1 0.1 3.10 3.09 3.10 
1.0 0.1 3.02 2.97 3.00 

10.0 0.1 2.91 2.64 2.80 

TABLE 4. Phase angle at which frictional, pressure, 
and total drag coefficients 4f, &, and q5d change sign 

where 4 is again the phase angle S,t. The coefficients are specified as functions of the 
instantaneous Reynolds number Re(t) = Re1 sin 41 and the instantaneous acceleration 
number Ac(t)  = Acsin2 $/I cos $1, taking absolute values. Odar (1966) gives the 
coefficients as 

(5.14) 

which interpolates the estimated values from the experiments. The equivalent steady 
flow drag coefficient Q D  is determined by Re(t), and Odar & Hamilton used the 
empirical results of Lapple (1951) to evaluate QD and separate it from the other terms. 
In figure 21 we have evaluated (5.13) for Re = 16.7 and S, = 0.625, reconstructing the 
procedure of Odar & Hamilton. This model result may be compared with the present 
numerical simulations and the actual measured values shown in figure 10. It is also 
of interest to compare these results with the simple Basset rule (5.10) which is also 
shown. The Odar model is no more accurate in this example than the Basset result, 
though the Basset solution obviously has none of the higher harmonics evident in 
figure 20. 

According to the Basset solution (5.10) and Odar & Hamilton's model (5.13) the 
effect of the history term is zero at a phase angle q5 = 371/4. The latter used this 
assumption to infer separately the contributions to Cd from added-mass effects and 
the history term. In both inviscid potential flow and unsteady Stokes flow the added- 
mass term appears as inviscid contribution to the pressure force C, with a coefficient 
QA equal to 0.5. For general viscous flow with vorticity, the main issue is to define 
clearly what is meant by an added-mass effect since viscous processes will modify 
both the kinetic energy and momentum changes in an unsteady flow. This issue is 
taken up in a companion paper (Part 2) and for oscillatory flows it is not a simple 
matter to separate out unambiguously the various contributions. The assumption of 
Odar & Hamilton regarding the vanishing of the history term at q5 = 3n/4 is probably 
incorrect, since it is linked to the assumption that the integral varies linearly with the 
square root of the oscillation frequency. Mei et al. (1991) and Mei & Adrian (1992) 
have demonstrated that for unidirectional, oscillatory motion at low frequencies or 

QA = 1.05 - 0.066/(A~(t)~ + 0.12), QH = 2.88 + 3.12/(Ac(t) + 1)3, 
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for the long term in accelerated motion, advection of vorticity rather than viscous 
diffusion is more significant and this gives a more rapid decay of the history kernel. 

Nevertheless it is of interest to examine the value of the pressure for C, at the 
phase angle d, = 3x/4 to see how it varies with non-dimensional frequency S,  and 
Reynolds number Re. The results from the simulations are shown in figure 22. The 
classical result, QA = 0.5, would imply an inertial contribution 

Ck(d,) = -2S, cos 8 (5.15) 

to the pressure force, which at d, = 3 4 4  would give Ci equal to $S,. Over the 
range 0.5 < S, < 10 the slopes of the curves are approximately constant with values 
varying between 1.42 and 1.43. There is a small offset in the value of C, since there 
will still be a viscous contribution even if the history term were instantaneously zero. 
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These results are consistent with (5.15) and lend support to the view that QA is 0.5 
irrespective of Reynolds number and acceleration number. 

Rivero (1991) and Rivero et al. (1991) have reported numerical simulations, based 
on a finite volume-element method, for unsteady axisymmetric flow past a sphere. 
They present results for simple oscillatory flow (5.6) at a peak Reynolds number 
Re = 100 and for frequencies S, equal to x and 0.1~. Their results for the force on the 
sphere and the surface vorticity distribution are consistent with those presented here. 
They decomposed the force C d  into a quasi-steady drag force involving Qo, an added- 
mass term and a history term. The value of Qo was found directly from simulations in 
steady flows at the same instantaneous Reynolds number. The added-mass effect was 
defined as the inertial contribution to C, dependent on the instantaneous acceleration. 
This was evaluated at specific phase angles 40 by computing the flow up to 4 = &, 
and then performing two separate short computations, one where the free-stream 
flow continued to accelerate and the other where the flow ceased to accelerate but 
continued at the same Reynolds number. By taking a short enough interval A 4  they 
determined the acceleration contribution to C, and found the corresponding value of 
QA to be 0.5 at each phase angle tested. The remaining history force did not vanish 
at 4 = 3x/4, but at a slightly earlier phase angle. 

We have not pursued this type of force decomposition with the present simulation 
results. The flow structure in oscillatory motion is clearly quite different in general 
from the equivalent steady flow conditions at the same Reynolds number, and it is 
somewhat arbitrary to decompose the force into a quasi-steady component and a 
history term as has been adopted in the past. It is also surprising that some of the 
empirical models may not present a major advantage over the Basset solution (5.10) 
as a first approximation to the total force. 

6. Conclusions 
Our investigation of oscillating flow past a sphere has yielded several interesting 

results. In a steady flow, we found that flow separation did not occur for Re < 20. 
However, we have found that separation is possible at these Reynolds numbers for 
an oscillating flow. The existence of a separation region is important because it acts 
to diminish the viscous forces on the sphere; in many cases the recirculation is large 
enough to generate a negative force. Besides lowering the viscous force, the separation 
bubble creates an asymmetry in the flow; the accelerating and decelerating phases of 
the oscillation cycle are not direct opposites of each other and create time-independent 
streaming patterns. 

The two parameters, S, and Re, play important roles in determining the exact 
nature of the separation region. We found that for a given phase angle the length of 
the separation region decreases but encompasses more of the sphere for increasing 
S, (decreasing amplitude). As the Strouhal number is increased, the surface vorticity 
becomes more symmetric about the sphere equator and increases in intensity. How- 
ever, this vorticity remains within the Stokes shear layer and does not fully diffuse 
into the flow field. The role of the Reynolds number is similar in nature. At very low 
Reynolds and Strouhal numbers, the shear stress is found to remain in phase with 
the forcing velocity. When a recirculation region is present, increasing the Reynolds 
number acts to lengthen the region, but reduce its breadth. Decreasing the Reynolds 
number not only changes the shape of the region, but also delays separation. 

Steady streaming patterns generated by finite-amplitude oscillations were quali- 
tatively similar to those predicted by Riley (1966) for small-amplitude oscillations. 
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Double boundary-layer structures were found only for flows where Re, 2 O( 1 ) .  While 
Re, 2 O( I) is a necessary and sufficient condition for a double boundary layer to exist 
in a low-amplitude flow, it is found to not be sufficient at higher amplitudes. Our 
results are consistent with the preliminary observations reported by Drummond 8z 
Lyman (1990), although the grid resolution of 15 x 21 points for their computations 
was much coarser than that used here. At Re = 20 and S, = 0.5 they observed steady 
streaming with a streamline pattern similar to figure 15, although without a double 
boundary-layer structure. 

Not only can the viscous force on the sphere exhibit a phase lead over the forcing 
velocity, but the pressure force was shown to exhibit a phase lead as well. This is due 
to the acceleration effects which increase with importance as the Strouhal number 
increases. In a companion paper we explore the flow characteristics and forces on a 
sphere in flows with constant acceleration or deceleration. For these it is possible to 
unambiguously determine the added mass coefficient and we find it to be indeed 0.5, 
in agreement with the findings of Rivero et al. (1991). 

The results in this paper were initially reported at the First European Fluid 
Mechanics Conference held at the University of Cambridge, September 199 1. Support 
for this work was provided by the DARPA-URI award (ONR-NOO014-86-KO75) and 
the Fluid Mechanics Program of the Office of Naval Research (ONR-NO0014-91- 
J 1340). 
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